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Abstract 

The agricultural sector plays a major role in the economic and social development of the population in 

Burkina Faso. However, essentially based on rainfed production, the low-productivity agriculture in 

the region is largely dependent on climatic hazards that repeatedly compromise their national food 

security. In this study, we develop a spatial and economic tool for strategic analysis and visioning to 

help understand where the best opportunities for rural infrastructure investments are in Burkina Faso. 

Our proposed approach utilizes stochastic frontier analysis to (i) identify areas of high agricultural 

potential with low accessibility to prioritize investments in road infrastructure according to a spatial 

model that estimates the minimum time taken to travel from any point in a country to the nearest 

market, and (ii) estimate average household gains in agricultural efficiency by comparing smallholders’ 

performance under current conditions and under a scenario of improved access to small-scale 

irrigation and rural electrification. Our results for Burkina Faso show a clear north – south divide in 

terms of agricultural potential: low potential in the north of the country versus higher potential in the 

south. The estimated agricultural efficiency, which measures the degree to which a region succeeds in 

operating on its profit frontier, shows an east – west divide, with higher efficiency regions appearing 

more often in the western part of the country. Superimposing the market access measure on the 

attainable agricultural potential estimates brings into focus two regions as priority areas for 

investments in expanding and improving the road network: the Est and Sud-Ouest regions that 

combine medium to high access times to markets with medium to high attainable agricultural 

potential. Finally, our analysis shows that the biggest gains in revenues from small-scale irrigation and 

rural electrification investments occur in the Sud-Ouest, Boucle du Mouhoun (Bale province), Centre-

Est and Est regions, while lack of access to water sources limits the potential for small-scale irrigation 

and the benefits from electrification in the Sahel region in the north. 

Keywords: Production Efficiency Measures, Agricultural Policy, Rural Development, Economic 

Geography 
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1. Introduction 

Burkina Faso is a landlocked, low-income country in Sub-Saharan Africa (SSA) with high demographic 

growth as well as high levels of poverty and gender inequity. With a Gross National Income per capita 

of US$790 in 2019. The agricultural sector plays a major role in the economic and social development 

of the population in Burkina Faso. Agriculture generates more than 30 percent of the GDP and is the 

main occupation of more than 80 percent of the country's working population, with over 70 percent 

of its agricultural production provided by small-scale rural producers who practice subsistence 

agriculture (Ministère de l’Economie et des Finance, 2018).  Burkina Faso is one of the poorest 

countries in the world and depends strongly on food imports to meet its domestic food demand. In 

2019, the poverty rate was 37 percent (using the international poverty line) and was expected to rise 

to over 39 percent in 2020 because of the economic crisis induced by the Covid-19 pandemic. Poverty 

is overwhelmingly concentrated in rural areas, which are home to 90 percent of poor households, and 

is largely attributed to under-employment, limited social inclusion, low agricultural productivity and 

poor access to electricity.  

Despite its prominent role in the country’s economy, the agriculture sector performs poorly in terms 

of crop and livestock productivity growth (USAID Burkina Faso, 2015). Therefore poverty reduction in 

Burkina Faso requires agricultural improvements for economic growth.  However, an analysis of the 

dynamics of the agricultural sector in Burkina Faso reveals that its growth is subject to structural 

deficiencies. Essentially based on rainfed production, this low-productivity agriculture is largely 

dependent on climatic hazards that repeatedly compromise the national food security. Among the 

bottlenecks that hinder the development of the agricultural sector, the World Bank identified the 

infrastructure deficit and lack of policy coherence as major obstacles underlying the country’s poor 

performance (World Bank, 2007). For these reasons, roads, irrigation and electrification projects have 

been frequently favoured by governments and donors looking to invest in infrastructure to accelerate 

economic growth and development in rural areas.  

We hypothesize that for investments in roads, irrigation and electrification to be effective for poverty 

alleviation, it is necessary that they lead to farm-level increases in productivity and are translated into 

higher incomes and better livelihoods for rural households.  Therefore, we develop a spatial and 

economic tool for strategic analysis and visioning to help understand where the best opportunities for 

investments in roads, small-scale irrigation and rural electrification are in Burkina Faso. The paper is 

organized as follows. After the first section devoted to the introduction, Section 2 describes the state 

and role of the road, irrigation and electricity infrastructures in the country. Section 3 describes the 

methodology and the data source. In Section 4 the findings are presented followed by the conclusion 

in Section 5.    
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2. Context of the study 

Infrastructure investment is crucial for Burkina Faso’s development due to its geographic position and 

climatic condition. For the transport, Burkina Faso relies on its road network to overcome its 

landlocked condition which imposes a mark-up on import and export costs, but also to benefit from its 

central position as a natural transit hub for West Africa (World Bank, 2007). Consequently, the country 

has developed four corridors to access international ports, (the Abidjan Road and Railway Corridor, 

the Lome Corridor, the Tema Corridor and the Cotonou Corridor) and has made maintaining regional 

roads in good condition a top strategic priority. However, while international and national connectivity 

is adequate, accessibility is poor beyond the trunk network, particularly in rural areas with only 25 

percent of the rural population living within two kilometres of an all-weather road (Gwilliam, et al., 

2008). The spatial distribution of Burkina Faso’s population, with a high concentration in the middle of 

the country and much more dispersed elsewhere, makes it particularly challenging to increase 

accessibility in rural areas by improving the quality of the existing rural network, in particular in the 

northeast areas of the country (Briceño-Garmendia & Domínguez-Torres, 2011). 

In addition, like in most Sahelian countries, there is a need to invest in irrigation in Burkina to reduce 

the dependence of the agricultural sector on rainfall.  Annual rainfall averages around 750 mm; the 

northern Sahelian area typically receive less than 600 millimeters while the southern Sudanian region 

receives up to 1,200 mm. However, rainfall has been gradually decreasing since the severe droughts 

of the 1970s (Sally et al., 2011). Inadequate rainfall necessitates irrigation for successful agriculture, 

yet infrastructure is poor and farmers’ access to irrigated water is low (FAPDA, 2014). Despite a 

potential of 233,500 hectares of irrigable land with total water control and 500,000 hectares of easily 

manageable lowlands, irrigated agriculture remains negligible, with less than one percent of cultivated 

land in Burkina Faso being equipped for irrigation (Mathematica Policy Research, 2018). Moreover, 

although total irrigated land doubled between 2004 and 2019, representing an average annual growth 

rate of seven percent, this rate of irrigation expansion is relatively slow given the initial low level of 

irrigated areas and the need for rapid growth of the agricultural sector. Crucially, the average annual 

growth rate decreased from ten percent in 2004-2013 to four percent in 2013-2019.  

Finally, the situation of the energy sector in Burkina Faso requires investment in the sector to meet 

the increasing demand in the country.  The price of electricity is one of the highest in the region, and 

the access rate is estimated at only 20 percent with a large gap between rural and urban areas (1.5 

percent in rural areas, 58 percent in urban areas; Power Africa, 2020). In addition, Grid-connected 

electricity users suffer through both load shedding and poor quality of service. Total installed 

generation capacity is estimated at 355 Megawatt (MW). Burkina Faso also relies on electricity import 

from Côte d’Ivoire and Ghana. The network is interconnected with Côte d’Ivoire through a 225 kilovolt 

(kV) transmission line supplying 70 MW and with Ghana through a 330kV transmission line 

commissioned mid-2018 that currently supplies an additional 40 MW. It was estimated that imports 

represented 37 percent of electricity supply in 2017, a share expected to grow significantly with 

imports from Ghana. Electricity supply is just enough to precariously meet the demand which increases 

by 10 percent per year. The capacity deficit to meet peak loads in 2019 is estimated at 40 MW (World 

Bank, 2019).  
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3. Methodology and data source  

3.1 Empirical strategy 

This study aims at assessing the link between agriculture-driven growth, poverty reduction, road 

infrastructure, small-scale irrigation and rural electrification investments. Therefore, these 

assessments include the economic components of the environment in which smallholders operate, 

such as market prices and the degree of access to those markets. For investments in rural 

infrastructure to be effective for poverty alleviation, they need to lead to farm-level increases in 

productivity and be translated into higher incomes and better livelihoods for rural households. 

Our proposed approach utilizes a stochastic frontier analysis (SFA) to (i) identify areas of high 

agricultural potential with low accessibility to prioritize investments in road infrastructure according 

to a spatial model that estimates the minimum time taken to travel from any point in a country to the 

nearest market, and (ii) estimate average household gains in agricultural efficiency by comparing 

smallholders’ performance under current conditions and under scenarios of improved access to small-

scale irrigation and rural electrification. While similar, the methodologies for small-scale irrigation and 

electrification differ slightly from each other due to the intrinsic differences in how these services are 

provided. In the case of electricity, once the provider has expanded the grid close enough for users to 

connect to it, consumption is limited only by the cost of the service bill. For small-scale irrigation, while 

farmers need to invest in equipment such as motor or solar pumps, and cover some running costs (fuel, 

maintenance, etc.), biophysical factors such as the availability of adequate water sources (surface or 

groundwater) and the topography (slope) of the land can be insurmountable barriers regardless of the 

availability of funds. Hence, for the small-scale irrigation SFA estimation it is crucial to include the 

impact of the biophysical constraints on agricultural potential, while for the electrification SFA 

estimation, it is essential to make an adequate prediction of electricity consumption for currently 

unconnected households or regions. 

The methodology for the small-scale irrigation analysis is illustrated in Figure 1. We use GIS measures 

for access to water sources (surface and groundwater) and slope, and the distance to agricultural 

markets (purple box) to capture the biophysical and economic constraints to small-scale irrigation and 

its impact on agricultural potential and efficiency through the SFA estimation (green box). We then 

simulate the impact of increasing access to small-scale irrigation, within the biophysical constraints 

established by the GIS variables on smallholder profits across the country (red box).   
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Figure 1. Methodological approach for small-scale irrigation analysis 

Source: Own elaboration 

The methodological approach for the electrification analysis is illustrated in Figure 2. The first step (in 

the yellow box) involves using a Heckman selection model (Heckman, 1976) to predict what would be 

the consumption of electricity for unconnected rural households under universal access. In the second 

step we estimate agricultural potential and efficiency estimates for smallholders using SFA under the 

assumption that electricity helps reduce the farms’ efficiency gap. This allows us to compare estimated 

efficiency levels under current conditions and under universal access (using the predicted electricity 

consumption from the first step) and calculate what are the agricultural revenue gains from 

electrification. In the third step we extrapolate these results for the whole country and combine them 

with GIS information on the status of Burkina Faso’s electrical grid and connectivity. 

 

Figure 2. Methodological approach for electrification analysis 

Source: Own elaboration 
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These approaches allow us to identify areas where improved access to markets could yield high returns 

for smallholders and compare estimated efficiency levels under current conditions and hypothetical 

scenarios of improved access to small-scale irrigation and electricity to assess the agricultural revenue 

gains linked to each case. Finally, we extrapolate these results for the whole country and combine 

them with GIS information on small-scale irrigation suitability, the countries’ electrical grid and 

connectivity rates. Our analytical results and maps highlight the spatial heterogeneity in opportunities 

and priorities for roads, small-scale irrigation and electrification investments in Burkina Faso. 

A more detailed description of the methodology is provided in the Annex. 

 

3.2 Data source 

The 2014 Enquete Multisectorielle Continue (EMC) is representative nationally, regionally and of urban 

and rural areas. Households were selected using a two-stage stratified sampling procedure. In the first 

stage, 905 enumeration areas were drawn with a probability proportional to the population. In the 

second stage, 12 households were selected with equal probability from each enumeration area. The 

survey was conducted in four rounds with the first round beginning in October 2013 and the final round 

finishing in October 2014. The agricultural module was only conducted once around the time of the 

final round of data collection while the other household characteristics included in our estimation were 

collected in all four rounds. Therefore, whenever a measure exists in more than one round, we include 

the value from the fourth round of data collection. If a measure is missing from the fourth round, then 

we fill in the value using the most recent round in which the value is available.  
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4. Results and Discussions  

4.1 Descriptive Analysis  

Statistics for the full EMC are provided in Table 1. Unfortunately, the EMC does not include detailed 

information on input use and prices, so instead of a farm profit frontier we estimate a farm revenue 

frontier. We also restrict the sample to households that have crop revenue equal to or greater than 

the price of one kilogram of peanuts. Our resulting sample size is 1,538 households.  

 

Table 1. Burkina Faso EMC full sample: Summary statistics 

 Mean Std. Dev. 

Prices     

Sorghum 125.59 12.89 

Maize 93.16 21.05 

Cowpea 191.21 22.33 

Sesame 438.63 100.64 

Cotton 225.03 0.83 

Groundnuts 156.75 40.84 

Household Characteristics   

Household size 7.16 4.88 

Female head (%) 13.98 34.68 

Maximum schooling (years) 3.81 4.75 

Crop Revenue (XOF) 21,350.48 302,653.31 

Land (ha.) 3.24 9.32 

Farm asset value (XOF) 210,994.61 1,282,340.38 

Manual Pump ownership (%) 3.52 18.43 

Observations 10,800   

Source: Own elaboration 

 

Summary statistics for this sample are presented in Table 2. Comparing to the full sample summary 

statistics, the households in the estimation sample look similar in terms of demographic and 

socioeconomic characteristics: household size, proportion of female headed households, and 

maximum years of schooling in the household. As would be expected, our estimation sample has a 

larger mean crop revenue, more land, higher value of farm assets, and is more likely to own a manual 

pump. 
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Table 2. Burkina Faso EMC SFA estimation sample: Summary statistics 

 Mean Std. Dev. 

Prices:     

Sorghum 126.25 12.17 

Maize 95.59 20.52 

Cowpea 196.33 27.90 

Sesame 448.57 130.40 

Cotton 225.11 1.68 

Groundnuts 159.19 44.42 

Household Characteristics:   

Household size 8.30 5.06 

Female head (%) 10.21 30.29 

Maximum schooling (years) 2.38 3.45 

Crop Revenue (XOF) 149,854.03 790,131.25 

Land (ha.) 5.50 9.79 

Farm asset value (XOF) 436,594.84 3,151,395.00 

Manual Pump ownership (%) 8.97 28.59 

Geospatial Variables:   

Accessibility (hours) 3.11 1.22 

Slope Index 94.16 5.73 

Water Access Index 44.81 6.12 

Land Use (% of area):   

Water 0.03  

Shrublands 2.53  

Savannas and Urban 18.01  

Grasslands and Barren 24.10  

Croplands 2.94  

Other 52.40  

Observations 1,538   

Source: Own elaboration 

 

 

 

 



 

 
9 

 

4.2 Agricultural potential and efficiency  

Results for the maximum likelihood estimation of the Heckman selection model are shown in Table 3. 

We assume electricity consumption (measured by the reported household’s electricity expenditure) is 

a function of some basic household characteristics (household head’s education, age and gender, 

household size and farm size), whereas the likelihood that a household has access to electricity (i.e. 

reports being connected to the grid) is a function of the grid infrastructure measured by the distance 

to electrified localities. As mentioned earlier, the lack of georeferenced locations for the EMC 

households reduces the precision of these estimates, but in terms of the point estimates, we observe, 

as expected, that living at a closer distance to an electrified locality positively affects the likelihood of 

having access to electricity. 

Table 3. Access to and consumption of electricity (Heckman selection model) 

 

Source: Own elaboration 

Table 4 shows the SFA estimation with the inclusion of the irrigation and electricity measures. As 

mentioned above, the dependent variable is the log of farm revenues rather than profits because the 

EMC does not include detailed information on input use and prices. The deterministic portion of the 

revenue frontier is a function of output prices, AEZs (land use variables), and the small-scale irrigation 

suitability measures. The factors influencing (the variance of) the non-negative component of the error 

term associated with farm efficiency are electricity consumption, market accessibility, physical capital 
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(land, assets, non-farm income), human capital (household size, household head characteristics), and 

an indicator for whether the farm owns a manual pump to proxy for current use of irrigation. The 

estimated coefficients from the regression in this table are used to predict regional level agricultural 

potential (capped by the level of suitability for small-scale irrigation) and efficiency (limited by the 

actual use of irrigation and electricity). Hence, for households without irrigation or electricity, the SFA 

estimation allows us to assess and map how much of the performance loss (in terms of farm profits) is 

due to the limited agricultural potential of the farm coming from the lack of access to water for small-

scale irrigation, or from the efficiency loss due to the lack of investments to tap onto the existing water 

resources or connect to the electricity grid. Or, in other terms, we identify how much more profitable 

agriculture could be in a region by investing in small-scale irrigation and rural electrification projects 

that would allow local farmers to benefit from their untapped potential. 

Both the water access index in the deterministic portion of the frontier function and the pump 

ownership indicator in the error term have the right sign but the point estimate is not significant. This, 

in part, could be caused by the fact that the EMC households are not georeferenced, so they are 

matched to province level averages of the GIS variables which results in a loss of precision. Also, pump 

ownership could be a weak proxy for irrigation use. The slope index is significant but has the incorrect 

sign, but given the little variation in the index this is not a big concern. 

The negative sign on the electricity expenditure variable indicates that an increase in electricity 

consumption is associated with a reduction in technical inefficiency. The estimated coefficients from 

the regression in this table are used to predict regional level agricultural potential and efficiency. When 

combined with the predicted electricity consumption for unconnected households obtained from the 

Heckman selection model estimation, the results give us the potential and efficiency estimates for the 

universal access scenario. 
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Table 4. Burkina Faso: Electrification SFA estimation 

 

Source: Own elaboration 

 

Figure 3 shows the estimated agricultural potential for Burkina Faso, where agricultural potential is 

defined as the maximum possible revenue1 that a farmer can gain from crop production if operating 

at maximum efficiency. The map shows a clear north – south divide: the low agricultural potential in 

the north of the country results from unfavourable conditions for agriculture with the predominance 

of shrubs, savannah and steppe, characterized by rocky soils, and a short-wet season that produces an 

average of 300 – 400 mm of rain per year. In contrast, the south received more than 750 mm of rain 

in 2013 (Figure 4). 

                                                 
1 For this study, revenue is defined as total revenues from crop and byproduct sales plus the value of own 
consumption 
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Figure 3. Burkina Faso: Agricultural potential 

 

The estimated agricultural efficiency in Figure 5, which measures the degree to which the potential in 

Figure 3 has or has not been attained, shows an east – west divide, with higher efficiency regions 

appearing more often in the western side of the country. Combining potential and efficiency into a 

single map by estimating the attainable agricultural potential (Figure 6) helps to illustrate the existing 

potential yet to be attained in each region (i.e. the size of the potential or frontier gap). The 

combination of high agricultural potential in the south and high agricultural efficiency in the west is 

also consistent with the production patterns of major crops such as maize and rice (Figure 7 and Figure 

8). 
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Figure 4. Burkina Faso: Annual precipitation (mm), 2013 

 

 

Figure 5. Burkina Faso: Agricultural efficiency 
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Figure 6. Burkina Faso: Attainable agricultural potential 

 

 

Figure 7. Burkina Faso: Maize production (tons), 2013 
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Figure 8. Burkina Faso: Rice production (tons), 2013 

 

4.3 Accessibility and road infrastructure 

One of the factors influencing efficiency is the degree of market accessibility each region has. For this 

purpose, we estimated the accessibility model (Figure 9) to determine the time costs of accessing the 

closest market, where market is defined as towns or cities with more than 25,000 inhabitants that can 

generate significant levels of demand for those products.  

The map in Figure 10 shows the spatial patterns that result from superimposing the market access 

measure in Figure 9 with the attainable agricultural potential in Figure 6. The map can help us visualize 

poorly connected areas in the country with considerable growth potential from efficiency gains in 

agriculture. The two regions that come into focus as a priority for investments in expanding and 

improving the road network are the areas in red in the Est region and the areas in orange in the Sud-

Ouest region that combine medium to high access times to markets with medium to high attainable 

agricultural potential. 

 



 

 
16 

 

 

Figure 9. Burkina Faso: Accessibility to cities with more than 25,000 inhabs. 

 

 

 

Figure 10. Burkina Faso: Attainable agricultural potential and time to markets 
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4.4 Profit gains from small-scale irrigation and rural electrification 

investments 

Figure 11 and Figure 12 show the magnitude of the estimated revenue gains from investments in small-

scale irrigation and rural electrification, respectively. This is the expected increase in profits that would 

result from moving farmers in each sample from their current irrigation adoption status to full 

adoption, given the constraints to their overall potential imposed by biophysical factors (access to 

water sources and slope) in the case of irrigation. Given that the biggest impact electrification can have 

on crop revenues in a setting with very low access to irrigation is by expanding the use of electric water 

pumps, it is not surprising that both maps are very similar. The biggest gains in revenues from small-

scale irrigation and rural electrification investments occur in the Sud-Ouest, Boucle du Mouhoun (Bale 

province), Centre-Est, and Est regions, while lack of access to water sources limits the potential for 

small-scale irrigation and the benefits from electrification in the Sahel region in the north. 

 

 

Figure 11. Burkina Faso: Revenue gains from irrigation 
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Figure 12. Burkina Faso: Revenue gains from electrification 

 

4.5 Poverty and food security 

In this section we discuss briefly how our analysis is complemented by considerations about the spatial 

distribution of poverty and nutrition outcomes. Figure 13 shows the province-level poverty map for 

Burkina Faso based on household data from the 2009 Enquête Intégrale sur les Conditions de Vie des 

Ménages (UNDP, 2014). The East is the region with the highest incidence of poverty (57.4 percent) and 

includes the two poorest provinces in the country (Tapoa, 61.4 percent, and Kompienga, 59.4 percent). 

However, all regions in Burkina Faso include at least one province with a poverty rate of 50 percent or 

higher, except for the Centre and Hauts-Bassins regions due to the relatively better living conditions in 

Ouagadougou and Bobo-Dioulasso, respectively. 
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Figure 13. Burkina Faso: Poverty map (EICVM 2009) 

 

To understand the spatial dimension of the food security situation in Burkina Faso, we present maps 

for stunting (Figure 14) and wasting (Figure 15) from the 2010 Enquête Démographique et de Santé et 

à Indicateurs Multiples. Stunting is the impaired growth and development that children experience 

from poor nutrition, repeated infection and inadequate psychosocial stimulation. Children are defined 

as stunted if their height-for-age is more than two standard deviations below the WHO Child Growth 

Standards median. On a population basis, high levels of stunting are associated with poor 

socioeconomic conditions and increased risk of frequent and early exposure to adverse conditions such 

as illness and inappropriate feeding practices. Stunting is prevalent in Burkina Faso with an estimated 

34.6 percent of children considered stunted and 14.5 percent classified as severely stunted. Figure 14 

shows that the problem is particularly severe in the Sahel and the Est, with over 40 percent of the 

children considered stunted (46.1 percent and 42.8 percent respectively) and over 20 percent classified 

as severely stunted (20.4 percent in both regions).  

While stunting can be considered a longer-term indicator of poor socioeconomic conditions, wasting 

or low weight-for-height captures exposure to severe negative shocks (food shortages and disease) 

and can be used as a predictor of child mortality. Children are defined as wasted if their weight-for-

height is more than two standard deviations below the WHO Child Growth Standards median. Wasting 

is prevalent in Burkina Faso with an estimated 15.5 percent of children considered wasted and 5.7 

percent classified as severely wasted. Figure 15 shows the problem is particularly severe in the Centre-

Nord and Centre-Est, with over 20 percent of the children considered wasted (24.7 percent and 20.6 

percent respectively). 
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Figure 14. Burkina Faso: Stunting prevalence 
 

 

 

Figure 15. Burkina Faso: Wasting prevalence 

24.7 

9.3 
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The results in the previous sections identified the most attractive areas for investments in rural 

infrastructure by prioritizing areas with the highest expected gains in agricultural revenue from closing 

productive efficiency gaps. The maps in this section show that while the prioritization strategy that 

results from such criteria might not be perfectly aligned with policies aimed at reducing poverty and 

improving nutrition outcomes at the subnational level, some geographic synergies exist and should be 

considered. Our accessibility maps (Figure 9 and Figure 10) show, for example, that the Est and Sahel 

(the two regions with the worst stunting outcomes) should be prioritized for investments in improving 

and expanding the road infrastructure, but that in terms of closing efficiency gaps in agriculture, the 

Est offers much better opportunities.  

 

5. Conclusions 

In this study, we develop a spatial and economic tool for strategic analysis and visioning to help identify 

the best opportunities for investments in roads, small-scale irrigation, and rural electrification in 

Burkina Faso. For such investments to be effective for poverty alleviation, it is necessary that they lead 

to farm-level increases in productivity and are translated into higher incomes and better livelihoods 

for rural households. Our proposed approach utilizes stochastic frontier analysis (SFA) to identify areas 

of high agricultural potential with low accessibility to prioritize investments in road infrastructure, and 

(ii) estimate average household gains in agricultural efficiency by comparing smallholders’ 

performance under current conditions and under separate scenarios of improved access to small-scale 

irrigation and rural electrification. Our analytical results and typology maps highlight the spatial 

heterogeneity in opportunities and priorities for road infrastructure, small-scale irrigation, and 

electrification investments.  

In Burkina Faso, our results show a clear north – south divide in agricultural potential: the low 

agricultural potential in the north of the country results from unfavourable conditions for agriculture 

with the predominance of shrubs, savannah and steppe, characterized by rocky soils, and a short wet 

season that produces an average of 300 – 400 mm of rain per year in contrast with the south that 

receives more than 750 mm of rain. The agricultural efficiency map, on the other hand, shows an east 

– west divide, with higher efficiency regions appearing more often in the western part of the country. 

The combination of high agricultural potential in the south and high agricultural efficiency in the west 

is also consistent with the production patterns of major crops such as maize and rice. Superimposing 

the market access measure on the attainable agricultural potential estimates brings into focus two 

regions as priority areas for investments in expanding and improving the road network: the Est and 

Sud-Ouest regions, that combine medium to high access times to markets with medium to high 

attainable agricultural potential. The biggest gains in revenues from small-scale irrigation and rural 

electrification investments occur in the Sud-Ouest, Boucle du Mouhoun (Bale province), Centre-Est, 

and Est regions, while lack of access to water sources limits the potential for small-scale irrigation and 

the benefits from electrification in the Sahel region in the north. 
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Annex: Methodology 

GIS market accessibility model 

The market accessibility model applies spatial analysis using GIS variables to simulate the shortest 

amount of time it takes to travel between any two different points in the country. The model was 

developed on a raster format, where the entire area of analysis was converted into a grid of cells 

measuring 25 by 25 meters each. The first step to estimate the accessibility model is to assign each of 

these cells a friction value, which represents the time it takes to travel through the cell, based on the 

availability and quality of roads, the slope, and the presence of natural barriers.  

Typically, roads in a network can be categorized as first order roads, second order roads, dirt road 

tracks, and walking trails. When first and second order roads are present in a cell, its crossing time can 

be calculated using the following equation: 

 

(1) 

Assuming specific travel speeds for first and second order roads (plus river navigation) results in the 

following cell crossing times: 

Table A1. Average speed and cell crossing time by type of road (first and second order) 

Type of road Average travel 
speed (km/h) 

Cell crossing 
time (secs) 

First order road 60 5 
Second order road 30 11 

Source: Own elaboration 

 

For roads classified as dirt road tracks and walking trails, the slope variable is used to calculate walking 

speeds. The walking velocity is calculated using the following equation from Tobler (1993): 

Walking velocity on footpath = [6 × exp(−3.5 × abs(S + 0.05))] (2) 

where S represents the slope. Finally, the walking velocity by type of road (dirt road, walking trail, and 

no road) is calculated as shown in Table A2. 

Table A2. Average speed by type of road (dirt road tracks, walking trails, and no roads) 

Type of road Average speed (km/h) 

Dirt road tracks Walking velocity on footpath × 1.25 
Walking trails Walking velocity on footpath 
No roads Walking velocity on footpath × 0.6 

 Source: Own elaboration 

 

Finally, the model considers the presence of natural barriers –in this case non-navigable rivers, which 

prevent people from traveling in a straight line unless there is a bridge. Cells corresponding to areas 

with a river and no bridge are assigned a travel time 10 times their value. 
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With the assumptions and equations presented above we build the friction model and allocate a travel 

time value to each cell. Then we run cost-weighted distance algorithms over the raster surface to 

choose the optimal route between any two points in the area of analysis that minimizes the 

accumulated travel time. To calculate this model, global geographic data on water, roads, railroads, 

topography, and natural barriers publicly available from DIVA-GIS is used. GIS land cover type data 

from NASA and the USGS is also used as an explanatory variable in the stochastic frontier estimation. 

GIS water access and slope measures for the small-scale irrigation analysis 

The biophysical suitability for small-scale irrigation is captured by two variables: the first denoting the 

accessibility to surface and ground water, and a second capturing the suitability of the slope for 

irrigation. These variables are inputs to the work done by Xie, et al. (2018) to predict irrigation 

expansion in Africa’s drylands by 2050. The first step was to estimate the pixel-level suitability for 

small-scale irrigation, where small scale irrigation is defined as the use of treadle pumps, motor pumps, 

small reservoirs, and ponds managed by individuals or local communities. These suitability scores are 

then used, along with other inputs, to simulate the expansion of irrigation for the 2050-time horizons. 

Slope and water access are two of the criteria considered in creating the small-scale irrigation 

suitability index; the other criteria being proximity to existing irrigation and market access. We’ve 

included the slope and water access components of the index rather than the full small-scale suitability 

index because of our need to characterize the biophysical components of irrigation use rather than the 

market constraints, which are already included in the frontier estimation through market access and 

prices.  

Water accessibility is measured on a scale from 0 to 100 where a score of 100 is given if the area is 

within the spatial extent of surface water bodies indicated by the Global Lakes and Wetlands Database 

level-3 database. This is a database developed by WWF and the Center for Environmental Systems 

Research at the University of Kassel that contains the maximum extent of permanent surface water 

bodies, including lakes, rivers, reservoirs, and wetlands. If a location is outside of this area, then the 

suitability is determined by the accessibility of ground water as categorized by the British Geological 

Survey’s digital ground water depth map of Africa. A score of 70 is given if the groundwater is very 

shallow, 40 if it is shallow, 20 if it is medium shallow, and 0 if it is medium. FigureA1 shows the water 

access index map for Burkina Faso. Most of the land area of the country is considered to have moderate 

suitability for irrigation in terms of water access with approximately 62 percent of the area given an 

index value of 40. Approximately 24 percent of the area is considered suitable or highly suitable with 

a score of 70 or higher.  

Similarly, slope is measured on a scale between 0 and 100 where 100 denotes most suitable and 0 

indicates unsuitable. We use the WWF’s HydroSHEDS Digital Elevation Model (DEM). An area is given 

a score of 100 if the grade is less than 2 degrees, 70 if the grade is between 2 and 4 degrees, 40 if it is 

between 4 and 7 degrees, 20 for areas between 7 and 10 degrees, and a value of 0 is assigned if the 

grade is greater than 10 degrees. FigureA2 shows the slope index map for Burkina Faso. 84 percent of 

the land area of the country has a slope of less than 2 degrees and is given an index value of 100 while 

only 1 percent has a slope of 7 degrees or higher.  
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Figure A1. Burkina Faso: Water access index 

 

 
Figure A2. Burkina Faso: Slope index 
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Heckman selection model for the rural electrification analysis 

To assess the impact of increasing access to electricity on smallholders, we first need to estimate what 

would the electricity consumption be for those households that do not have access to the service yet. 

Therefore, we need to estimate the following underlying relationship: 

𝑒𝑐𝑖 = ℎ𝑖𝛾 + 𝜇
1𝑖

   (3) 

where 𝑒𝑐𝑖 is the electricity consumed by household i during a given period, ℎ𝑖 is a vector of household 

characteristics, and 𝜇1𝑖 is an error term distributed 𝑁(0, 𝜎). However, electricity consumption is only 

observed if the household is connected to a service provider if: 

𝑞
𝑖
𝜃 + 𝜇

2𝑖
> 0    (4) 

where 𝑞𝑖 is a vector that includes factors that determine whether household i is connected to a service 

provider, 𝜇2𝑖 is an error term distributed 𝑁(0,1), and corr(𝜇1, 𝜇2) = 𝜌.  

 

 
Figure A3. Burkina Faso: Distance to electrified localities 

 

Heckman’s approach (Heckman, 1976) provides consistent, asymptotically efficient estimates for all 

the parameters in this model if variables that strongly affect access to electricity but not consumption 

can be found. Given the available data, we use the average distance to the nearest electrified locality 

(Figure A3A3) for Burkina Faso as a measure that explain access to electricity, but not directly 

determine consumption. 
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Stochastic frontier analysis 

The two most commonly used methods to estimate the efficiency of production units are data 

envelopment analysis (DEA) (Charnes, et al., 1978; 1981) and stochastic frontier analysis (SFA) (Aigner, 

et al., 1977; Meussen & van den Broeck, 1977; Battese & Corra, 1977). DEA is a non-parametric 

approach that uses linear programming to identify the efficient frontier, while SFA is a parametric 

approach that hypothesizes a functional form and uses data to econometrically estimate the 

parameters of that function.2 Both methods measure efficiency as the distance between observed and 

maximum possible (frontier) outcomes, but the key advantage of SFA for our purposes is that, unlike 

DEA, it allows to separate random noise in the error term from the actual efficiency score which is an 

important feature when analyzing agricultural activities constantly exposed and extremely sensitive to 

random shocks. DEA estimates a deterministic frontier that incorporates the noise as part of the 

efficiency score, which is more appropriate when analyzing decision making units such as banks or 

factories.3 

The SFA approach allows the econometric exploration of the notion that, given the fixed local 

agroecological and economic conditions in a micro-region and the occurrence of random shocks that 

affect agricultural production (weather, prices, etc.), the investment and production decisions a farmer 

makes translate into higher or lower production and income. In such a context, inefficiency is defined 

as the loss incurred by operating away from the frontier given the current prices and fixed factors faced 

by the household. By estimating where the frontier lies, and how far each producer is from it, the 

stochastic frontier approach helps to identify local potential and efficiency levels to construct the 

typology. A graphical depiction of this concept is shown in Figure A4. 

 
 Source: Own elaboration 

Figure A4. Illustration of the stochastic production frontier in the single-output, single-input case 

                                                 
2 See Park & Simar (1994), Kumbhakar & Tsionas (2008), and Martins-Filho & Yao (2015) for semi-parametric 
approaches to SFA that relax some of its parametric functional form requirements. 
3 The main cost of using SFA is that it requires more detailed data to model the efficiency term and, as in any 
parametric approach, it relies on making the correct choice of functional form. 
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Using the basic model proposed by Aigner, et al. (1977) and Meeusen & van den Broeck (1977) the 

stochastic frontier production function is defined as: 

𝑦𝑖 = 𝑓(𝑥𝑖; 𝛽)exp(𝑣𝑖 − 𝑢𝑖)   (5) 

where 𝑦𝑖  is the possible production for farmer i, 𝑓(𝑥𝑖; 𝛽) is an adequate function of inputs 𝑥 and 

parameters 𝛽, 𝑣𝑖 is a random error with zero mean, associated with random factors that are not under 

the farmer’s control, and 𝑢𝑖 is a non-negative random variable associated with factors that prevent 

farmer i from being efficient. 

Then the possible production 𝑦𝑖  is bounded by the stochastic quantity 𝑓(𝑥𝑖; 𝛽)exp(𝑣𝑖). It is assumed 

that the stochastic errors 𝑣𝑖 are i.i.d. random variables distributed 𝑁(0, 𝜎2), and independent from 𝑢𝑖. 

A farmer’s technical efficiency is defined as the fraction of the frontier production that is achieved by 

his or her current production. 

Given the frontier production of farmer i is 𝑦𝑖
∗ = 𝑓(𝑥𝑖; 𝛽)exp(𝑣𝑖) then his or her technical efficiency 

can be defined as: 

𝑇𝐸𝑖 =
𝑦𝑖

𝑦𝑖
∗
=

𝑓(𝑥𝑖;𝛽)exp(𝑣𝑖−𝑢𝑖)

𝑓(𝑥𝑖;𝛽)exp(𝑣𝑖)
= exp(−𝑢𝑖)    (6) 

Caudill & Ford (1993) and Caudill, et al. (1995) showed that the presence of heteroskedasticity in 𝑢𝑖 is 

particularly harmful because it introduces biases in the estimation of 𝛽 and technical efficiency. This is 

very likely to occur if there exist sources of inefficiency related to factors specific to the producer. In 

this case the distribution of 𝑢𝑖 will not be the same for all the observations in the sample and a 

correction for heteroskedasticity needs to be made by modelling the variance of 𝑢𝑖: 

𝜎𝑢𝑖
2 = exp(𝑧𝑖𝛿)     (7) 

where 𝑧𝑖  are farmer-specific factors affecting his or her technical efficiency. 

To estimate the model expressed by equations (3) - (5) it is necessary to address the fact that farms 

are multi-output production units, making it necessary to move from a production function to a profit 

or revenue function approach.  The stochastic frontier profit function can be expressed as (Kumbhakar 

& Lovell, 2000): 

𝜋𝑖 = 𝑓(𝑝𝑖 , 𝑤𝑖; 𝛽)exp(𝑣𝑖 − 𝑢𝑖)    (8) 

where 𝑝𝑖  and 𝑤𝑖 are output and input price vectors, respectively. 

Farm-specific characteristics and conditions in which its productive activities take place affecting the 

smallholder’s technical efficiency and determined by decisions made at the local level by the 

household or community in the short term are included in the vector 𝑧𝑖, referred to in (7). Typically, 

the effect of factors included in 𝑧𝑖  cannot be captured by a price or set of prices due to market failures 

often found in the context of agricultural activities in developing countries. For this study, we 

incorporate the following variables of 𝑧𝑖  in the econometric analysis: 

 Farm size: Number of hectares of land managed by the farmer. In contexts where smallholders 

have little access to land and credit markets (or these are not properly developed) the effect 

of land and land availability cannot be fully captured with the price of land in the deterministic 
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portion of the stochastic frontier. Therefore, the amount of land the farmer currently manages 

restricts his scale and is a source of inefficiency that needs to be included in the error term. 

 Farm assets: Value of farm assets to proxy for other capital inputs. 

 Household size: Number of household members. The small scale and low revenue stream of 

many of these farms does not always allow them to hire labor to adjust their scale to seasonal 

changes and market trends, which makes them rely more heavily on the household’s labor 

supply.     

 Characteristics of the household head: Depending on each particular context, the gender and 

education of the household head can proxy for the farmer’s access to information and 

opportunities that affect the performance of the productive unit. 

In addition to these factors, in an agricultural context it is necessary to consider other conditions that 

affect the farm’s potential that cannot be easily modified in the short or medium term, such as the 

climate or soil quality. For this reason, the farm’s potential or frontier is adjusted using GIS data on 

agroecological zones or agricultural land use types. These variables are introduced as shifters of the 

deterministic portion of the frontier so (8) becomes: 

𝜋𝑖(𝑝, 𝑤, 𝐴𝐸𝑍) = 𝑓(𝑝𝑖 , 𝑤𝑖, 𝐴𝐸𝑍𝑖; 𝛽)exp(𝑣𝑖 − 𝑢𝑖)   (9) 

where 𝐴𝐸𝑍 are the agroecological zone variables. 

Assuming a Cobb-Douglas production function the normalized profit or revenue frontier function for 

the single output case estimated through maximum likelihood is: 

𝑙𝑛
𝜋

𝑝
= 𝛿0 +∑ 𝛿𝑛 𝑙𝑛

𝑤𝑛

𝑝𝑛 + ∑ 𝛿𝑞𝐴𝐸𝑍𝑞𝑞 + 𝑣𝜋 − 𝑢𝜋  (10) 

To estimate Equation 10 the data requirements are a recent household survey representative at the 

national and sub-national levels, that includes information on farm revenues, agricultural prices, and 

farm and household characteristics, as well as GIS on local agroecological characteristics, such as land 

use, as well as for market access measures. For Burkina Faso, we use household level data from the 

2014 Enquete Multisectorielle Continue (EMC).  




